

İST40 TELESKOBU İLE DEĞİŞEN YILDIZ GÖZLEMLERİ

Sinan ALİŞ <u>salis@istanbul.edu.tr</u>

Değişen Yıldız Nedir?

Parlaklığında zamanla değişim görülen yıldızlara değişen yıldız denir.

1596 - David Fabricius / omicron Ceti - Mira

1700ler - William Herschel / alpha Her / 44i Bootis

1700ler - John Goodricke / Algol - Beta Persei

From a window in Treasurer's House near this tablet, the young deaf and dumb astronomer JOHN GOODRICKE 1764 - 1786

Değişen Yıldızlar Aile Ağacı

Table 1.2 Eruptive variables

=

Variables	GCVS		
FU Orionis	FU T Tauri like stars		
y Cassiopeia & Be	GCAS be stars		
	early type spectra IA		
	mid/late type IB		
Irregular	I Orion variables IN Rapid irregular IS IN INA early type spectra INB mid/late type INT T Tau stars IN(YY) matter accreting ISA early type spectra ISB mid/late type		
R Coronae Borealis	RCB eruptions plus pulsation		
RS Canum Venaticorum	RS close binaries with H and K Ca II in emission		
S Doradus	SDOR very luminous stars (hypergiants)		
UV Ceti (flare stars) Wolf–Rayet	UV UV KV-MV flaring on time scales of minutes UVN flaring Orion stars of UV type WR broad emission features		

Table 1.4 Rotating variables

Variables	GCVS	
2		
α^2 Canum Venaticorum	ACV &ACVO	B8p-A7p main-sequence stars
BY Draconis	BY	emission-line K-M dwarfs
Ellipsoidal	ELL	rotating ellipsoidal variables
FK Comae	FKCOM	rapidly-rotating spotted G-K giants
Pulsars	PSR	rapidly-rotating neutron stars
SX Arietis	SXARI	high-temperature analogues of α^2 CVn stars

_

Table 1.5 Eruptive supernovae and cataclysmic variables

Variables	GCVS
Novae	N NA Fast novae NB Slow novae NC Very slow novae
Novalike	NL
Supernovae	SN { Type I Supernovae SN I Type II Supernovae SN II
U Geminorum stars (dwarf novae)	UGSS SS Cyg stars UGSU SU UMa stars UGZ Z Cam stars
Z Andromedae stars	ZAND symbiotic systems

Table 1.3Pulsating variables

Variables	GCVS
α Cygni	ACYG Be-Ae pulsating supergiants
β Cephei	BCEP BCEP Sclassical β Cep stars BCEPS short period β Cep stars
Cepheids	CEP { CEP radially pulsating F Ib-II stars CEP(B) double mode pulsators
W Virginis	$CW \begin{cases} CWA & population II, Period > 8^{d} \\ CWB & population II, Period < 8^{d} \end{cases}$
Classical Cepheids	DCEP { DCEP classical Cepheids (pop. I) CEP(S) classical Cepheids (overtone)
δ Scuti	DSCT { DSCT A0-F5III V pulsating stars DSCTC low amplitude DSCT stars
Slow irregular variables	L { LB late type giants LC late type supergiants
Mira stars	M long period late type giants
PV Telescopii	PVTEL helium supergiant Bp stars
RR Lyrae	RR RR(B) double mode RR Lyr stars RRAB RR Lyr stars with asymmetric light curves RRC RR Lyr stars with symmetric light curves RVA radially pulsating supergiants with constant mean magnitude
RV Tauri stars	RV RVB radially pulsating supergiants with variable mean magnitude
Semi-regular variables	SR SRA M, C, S giants with some periodicity SRB M, C, S giants without periodicity SRC SRD
SX Phoenicis stars	SX PHE pop II pulsating subdwarfs
ZZ Ceti stars	ZZ ZZA hydrogen pulsating white dwarfs ZZB helium pulsating white dwarfs

Table 1.6Eclipsing variables

Variables	GCVS	
Classification a		
Classification b	$E \begin{cases} EA \\ EB \\ EW \end{cases}$ $\begin{cases} GS \\ PN \\ RS \\ WI \\ WI \end{cases}$	 Algol types β Lyr types WUMa types one or two giant components one component is the nucleus of a planetary nebula RS CVn system Systems with a white dwarf component Systems with a WR component
Classification c	AR D A K A SD	AR Lac type detached system DM Detached main sequence systems DS Detached systems with subgiant DW Detached systems like WUMa systems KE contact systems of early spectral type KW contact systems of late spectral type semi-detached systems

Dönen Değişen Yıldızlar

Table 5.2. Bright and/or interesting ellipsoidal variables

Name	Period (d)	ΔV	Spectrum	V
ψ Ori	2.526	0.03	B0+B0	4.58
α Vir	4.014	0.10	B2V+B3Vi	0.96
π^5 Ori	3.700	0.05	B3+?	3.72
o Per	4.419	0.03	B1III+B	3.82
b Per	1.527	0.06	A2+?	4.54
V1357 Cyg	5.599824	0.21	O9.7Iab + black hole	8.95

Örten Çift Yıldızlar

Phase

http://astro.unl.edu/naap/ebs/animations/ebs.html

1.0

0.0

0.5

Phase

1.5

2.0

Zonklayan Yıldızlar

Variable	Ν	Р	Spectrum	Δm
Classical cepheids (δ Cep, W Vir)	800	1–135	F–K I	$\lesssim 2$
RR Lyrae	6100	< 1	A–F8	$\lesssim 2$
Dwarf cepheids (δ Scuti)	200	0.05–7	A–F	$\lesssim 1$
β Cephei	90	0.1–0.6	B1–B3 III	$\gtrsim 0.3$
Mira variables	5800	80-1000	М–С	$\gtrsim 2.5$
RV Tauri	120	30-150	G–M	$\lesssim 4$
Semiregular	3400	30-1000	К–С	$\lesssim 4.5$
Irregular	2300	-	K–M	$\lesssim 2$

AAVSO DATA FOR R Leo - WWW.AAVSO.ORG

Hertzsprung-Russell Diagramı

Figure 1: Large Magellanic Cloud Image by David Malin

Kataklismik Değişenler

AAVSO DATA FOR ER UMA - WWW.AAVSO.ORG 12 12.5 13 13.5 8 Magnitude 14 0 14.5 15 15.5 16 01/01/12 01/01/11 03/01/11 05/01/11 07/01/11 09/01/11 11/01/11 03/01/12

Tablo 1.1 : Kataklismik değişenlerin sınıflandırılması. Çizelgenin ilk sütununda sınıflar büyük harflerle, bu sınıflara ait olan alt sınıflar küçük harflerle ve italik olarak yazılmıştır. İkinci sütun patlama genliğini, üçüncü sütun bir patlama sırasında açığa çıkan enerjiyi, dördüncü sütun ise patlamaların tekrarlama dönemlerini göstermektedir (Ak, 1999).

SINIF	GENLİK	ENERJİ ÇIKIŞI	TEKRARLAMA6
	(^m)	(erg)	DÖNEMİ
NOVA	8 - 18	$10^{44} - 10^{45}$	Tekrarlama yok
TEKRARLAYAN NOVA	7 – 9	$10^{43} - 10^{44}$	10 - 100 + yıl
CÜCE NOVA			
U Gem	2-6	$10^{38} - 10^{39}$	30 - 500 + gün
SU UMa	2-6	$10^{38} - 10^{39}$	10 - 30 + gün
Z Cam	2 – 6	$10^{38} - 10^{39}$	10 - 50 + gün
NOVA BENZERİ YILDIZ			
UX UMa			
Anti-Cüce	2 – 5		sönükleşme
DQ Her			
AM Her	2 – 5		sönükleşme
AM CVn			

Light Curve for V1494 Aql

SN 1987A

Yıldızların Adlandırılması

Alpha	ι	lota	ρ	Rho
Beta	κ	Карра	σ	Sigma
Gamma	λ	Lambda	τ	Tau
Deita	μ	Mu	υ	Upsilon
Epsilon	v	Nu	φ	Phi
Zeta	ξ	Xi	χ	Chi
Eta	ō	Omicron	Ψ	Psi
Theta	π	Pi	ω	Omega
	Alpha Beta Gamma Delta Epsilon Zeta Eta Theta	AlphalBetaKGammaλDeltaμEpsilonVZetaξEtaOThetaπ	AlphallotaBetaKKappaGammaλLambdaDeltaμMuEpsilonVNuZetaξXiEtaOOmicronThetaπPi	AlphaIIota ρ BetaKKappa σ Gamma λ Lambda τ Delta μ Mu υ Epsilon ν Nu ϕ Zeta ξ Xi χ Eta σ Omicron ψ Theta π Pi ω

Nam e	Bayer	Hipparchus	Flamsteed
Antares	α Sco	HIP 80763	
Betelgeuse	α Ori	HIP 27989	
Merak	βUMa	HIP 53910	
	-	HIP 107232	44 Cap
Saiph	κOri	HIP 27366	
Sirius	α CMa	HIP 32349	

_	Star	Bayer Designation	Apparent Magnitude
	Sirius	Alpha Canis Majoris	-1.46
	Vega	Alpha Lyrae	0.03
	Rigel	Beta Orionis	0.12
	Betelgeuse	Alpha Orionis	0.7
	Antares	Alpha Scorpii	0.96
	Polaris	Alpha Ursae Minoris	2.02

Değişen Yıldızların Adlandırılması

۲

۲

0

Bayer adlandırması olan yıldızlar adlandırılmaz

Adlandırmaya R'den başlanır ve Z'ye kadar devam edilir.

- Z'den sonra, RR'den RZ'ye sonra SS'den SZ'ye, TT'den TZ'ye ve en son ZZ'ye kadar devam edilir.
- ZZ'den sonra, AA'dan AZ'ye, BB'den BZ'ye, CC'den CZ'ye ve en son QZ'ye kadar adlandırma yapılır. J harfi hiç kullanılmaz.
- Bu şekilde yapılan adlandırmada BA, CA, CB, DA veya benzeri adlandırma üretilmez.

Bu şekilde toplam 334 değişen yıldız adlandırılabilir.

Sonrasında V335, V336, V337 diye devam edilir.

Ör: GQ Dra, V357 Peg, W UMa, 44 Bootis, AB And, RZ Cas, V401 Aur

Soru: Bir takımyıldızda en çok kaç değişen olabilir? Hangi takımyıldızlar?

Değişen Yıldız Listeleri / Katalogları

Bir yıldızın değişen olup olmadığını nereden öğrenebiliriz?

SIMBAD http://simbad.u-strasbg.fr

GCVS General Catalogue of Variables Stars http://www.sai.msu.su/gcvs/gcvs/

IBVS Information Bulletin on Variable Stars <u>http://www.konkoly.hu/IBVS/</u>

COMMISSIONS 27 AND 42 OF THE IAU NFORMATION BULLETIN ON VARIABLE STARS

Amerikan Değişen Yıldız Gözlemcileri Birliği

Janet Akyüz Mattei (1943–2004) (Photo by Michael Mattei, courtesy of the AAVSO.)

http://www.aavso.org

Görsel Gözlem / CCD ile Gözlem

	Strengths	Weaknesses
	Quick	Cannot go as faint without very large apertures
	Easier (minimal technology)	
Visual		Less precision
	Less equipment/Less expensive	Affected by observer physiology as well
	Sufficient accuracy for high-amplitude stars	as technique
	Higher precision	
		Time consuming
CCD	properly calibrated)	Complex technology
	Can go much fainter	Requires more equipment and more
		expense
	Can be automated	

Parlak Değişen Yıldızlar / Çıplak Gözle Gözlem

Argelander Yöntemi

Figure 6.1. Delta Cephei: 22h27m.3, +58°10′; circle is 8°; Cepheid variable; range 3.5–4.4; period 5.37d.

Prof. Dr. W. TürkerÖzkan

İSTANBUL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

DOKTORA TEZİ

		83147
	CÜCE NOVALARI	N
UZUN	SUKELI DAVKAN	IŞLARI
Astrono	omi ve Uzay Bilimleri Ana B Yıldız Atmosferleri Progran	ilim Dalı บ
	Hazırlayan: Tansel AK	
Danı	sman: Prof. Dr. M. Türker Ö	ZKAN

. BC. YÖRSEKÖÄDETINA MANAN DOKÜMANIASI CALL

Şubat - 1999

Hemen belirtmeliyim ki, henüz değerlendirmeye girmemiş, neredeyse tümü ham vaziyetteki verilerin bir kısmını çalışmamın hizmetine sunan, doktora tezimin konusunu kendisi ile yüzyüze tartışma şansı bulabildiğim AAVSO Başkanı Dr. J.A. Mattei'ye, ve gene aynı nitelikteki verilerin çok kısa bir süreç içinde elime geçmesini sağlayan RASNZ Başkanı Dr. F.M. Bateson'a minnettarım.

İSTANBUL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

YÜKSEK LİSANS TEZİ

Z CAM TÜRÜ CÜCE NOVALARIN DURAKSAMA ÖZELLİKLERİ

Astronom Sinan ALİŞ Astronomi ve Uzay Bilimleri Programı

> Danışman Prof.Dr. M. Türker ÖZKAN

> > Haziran, 2004

AAVSO'yu 30 yıldır başarıyla yöneten Türk bilimci Sayın Dr. Janet Akyüz Mattei bu çalışmanın hazırlanma süreci içinde 22 Mart 2004 tarihinde, yakalandığı kan kanserinden kurtulamayarak hayata veda etmiştir. Çalıştığım yıldızlara ait en son verilere ulaşmam konusundaki yardımlarını ve hem amatör hem de profesyonel astronomi dünyasına yaptığı katkıları unutmam mümkün değil. Bu çalışmayı onun aziz hatırasına ithaf ediyorum.

Kataklismik değişenlerin bir alt sınıfı olan Z Cam türü cüce novalar, ışık eğrilerinde gösterdikleri duraksamalarla en ilginç yıldız gruplarından biridir. Bu türden davranışların araştırılmasında uzun dönemli görsel verilere ihtiyaç duyulmaktadır. Bu verilerin kesintisiz olması ayrıca beklenen bir durumdur. Ancak bu gözlemleri yapabilmek profesyonel astronomlar için neredeyse imkânsızdır. Bunun iki nedeni vardır: 1) Profesyonel astronomların yüzlerce yıldızı uzun süreli gözleyecek vakitleri yoktur, 2) Gözlemevlerinden teleskop zamanı alabilmek için buralara özgün projeler vermek gerekmektedir. Ne mutlu ki, günümüzde amatör astronomi oldukça gelişmiştir ve gökyüzüne meraklı insanlar sayesinde ihtiyaç duyulan veriler toplanabilmektedir. Bu çalışmadaki verilerin de alındığı AAVSO şu anda amatörlerin çalıştığı Dünya'daki en büyük kuruluştur. AAVSO gözlemcilerinin yoğun emekleri sayesinde oluşturulan veri bankasındaki gözlemler profesyonel araştırıcıların hizmetine sunulmaktadır. Bu bağlamda bu çalışmada kullanılan veriler için öncelikle AAVSO gözlemcilerine teşekkür etmek istiyorum. Onların karşılıksız çabaları olmasaydı bu ve benzeri çalışmaların ortaya çıkmaları mümkün olamazdı.

Mag	nitude	Band width [nm]	Effective wavelength [nm]
U	ultraviolet	66	367
В	blue	94	436
V	visual	88	545
R	red	138	638
Ι	infrared	149	797
u	ultraviolet	30	349
V	violet	19	411
b	blue	18	467
У	yellow	23	547

 $m = -2.5 * \log(I)$ I = Counts * Gain

Sonuçların Yayınlanması / Bilimsel Makale Yazımı

olan V357 Peg in 21 - 30 Eylül 2000 tarihlerinde TÜBİTAK Ulusal Gözlemevi inde, 40 cm. çaplı teleskop ve SSP5-A işikölçeri (Hamamatsu 4457) kullanılarak, Johnson UBVR süzgeçlerinde işik eğrisi elde edilmiştir. Kwee - van Woerden yöntemi ile iki Min I ve iki Min II zamanı elde edilmiştir. UBVR renklerinde elde edilen isik eğillerinden, Binary Maker 2.0 (Bradstreet, 1993) programı kullanılarak yapılan yaklaşımda, bileşenlerin kesirsel yarıçapları, kütle oranı, sıcaklıkları, yörünge eğimi belirlendi. Bu değerler WD yöntemiyle yapılacak çözümleme için giriş değerleri olarak kabul edildi ve daha sonra bu ışık eğrileri DC programı aracılığı ile çözümlenmiştir.

Yaşarsoy, Sipahi ve Keskin (2000) tarafından yapılan dizgeye ait ilk gözlemlerden elde edilen minimum zamanları da kullanılarak yapılan O-C analizinde, dönemde kaba bir azalma görülmekle birlikte nokta yetersizliğinden dolayı bu sonuç çok anlamlı durmamaktadır.

1. GIRIS

V357 Peg, HIPPARCOS uydusu tarafından keşfedilmiş bir örten çift yıldızdır (ESA, 1997). HIPPARCOS Kataloğunda bulunan yeni keşfedilmiş 33 W UMa yıldızından biridir (Atay ve ark., 2000). Dizgenin ışık değişimi 9" ile 9",485 arasında değişmektedir. Katalogda dizgenin tayf sınıfi F5 olarak verilmiştir. Dizgeye ilişkin ilk ışık öğeleri HIPPARCOS tarafından verilmiştir (ESA, 1997):

Min I HJD = 24 48500.3159 + 0.578452 x E

V357 Peg ilk olarak YSK00 (Yaşarsoy, Sipahi ve Keskin, 2000) tarafından gözlenmiş ve ilk minimum zamanları KYS00 (Keskin, Yaşarsoy ve Sipahi 2000) tarafından verilmiştir. YSK00, V357 Peg in baş minimumunun daha sığ olduğunu söylemiş ancak durumun tam tersi olduğu AKA02 (Alış, Keskin ve Atay, 2002) tarafından gösterilmiştir. Bu durumda V357 Peg, klasik sınıflandırmaya göre A toro bir W UMa sistemi elarak göze çarpmakta ancak 4. bölümde de görüleceği gibi kütle oranı değeri ile genel aralığın dışında kalmaktadır. Minimumların yerlerinde yapılan bu yanlışlık sonucu KYS00 'da verilen zamanlar da hatalı olmuştur ve bununla ilgili düzeltme AKA02 'de belirtilmiştir.

Samolyk, JA495095hmr41,2013 **Recent Minima of 199 Eclipsing Binary Stars**

Cerned Samphik P.O. Box 20677; Grounfield, WI 53220; gaamolyk@wi.re.com

Received October 4, 2013: accepted October 4, 2013

Abstract This paper continues the publication of times of minima for eclipsing binary stars from observations reported to the AAVSO EB section Times or minima from observations received from December 2012 through tember 2013 are presented.

1. Recent Observations

\$28

The accompanying list contains times of minime calculated from recent CCD rvations made by participants in the AAV90's eclipsing binary program This list will be web-archived and made available through the A/0/SO ftp site at flp.//flp.aevo.org/public/datasets/gsamoj412.txt. This list, along with the eclipsing binary data from earlier AAVSO publications, is also included in the Lichtesknecker database (Kreiner 2011) administrated by the Bunderdeutsche Arbeitsgemeinschaft für Veränderliche Stenne e. V. (BAW) at: http://www.hevastro.de LADB/index.php?lang-en. These observations were reduced by the observers or the writer using the method of Kwee and Van Worden (1955). Column F in Table 1 indicates the filter used A "C" indicates a clear filter. The standard error is included when available

The linear elements in the General Catalogue of Nariable Stars (OCVS, Kholopuv et al. 1985) were used to-compute the O-C values for most stars. For a few exceptions where the GCVS elements are missing or are in significant error, light elements from another source are used: AC CMi (Samolyk 2008), CW Cas (Samolyk 1992a), DV Cep (Frank and Lidhenknecker 1987), DF Hya (Samolyk 1992b), DK Hya (Samolyk 1990), GU Oci (Samolyk 1985). The light elements for QX And, V952 Cas, EX Leo, and CU Tau are from Kreiner (2013). O. C values listed in this paper can be directly compared with values published in the AAT2D Observed Minima Timings of Eclipsing Binaries sectors.

References

Frank, P., and Lichtenkoecker, D. 1997, *BAP Max.*, No. 47, 1. Kreiner, J. M. 2011, Lichtenkoecker-Database of the BAV (http://www.bavdata-

attodel-tilegi-bis/vartan egi). Kreiner J. M. 2013, Lip-to-date inner elements of eclipsing binarios (http://

www.as.up.lenikow.pi/aphene/j, Crucow Padagogical Univ., Crucow. Kholopov, P.N., et al. 1985, General Catalogue of Tariable Stare, 60xed., Moscow

Complete table of contents inside.

The American Association of Variable Star Observers 49 Bay State Road, Cambridge, MA 02138, USA

30000.0 ×

magnitudes for MV Sgr. Black color coding indicates AAVSO data, red photoelectric data, green CCD data, and blue two photoelectric possible

Also in this issue...

New Observations of AD Serpentis

MV Sgr data points.

- Amplitude Variations in Pulsating Red Giants. II.
- Some Systematics
- · Studies of the Long Secondary Periods in Pulsating Red Giants. II. Lower-Luminosity Stars
- Improving the Photometric Calibration of the Enigmatic Star KIC 8462852

Sonuçların IBVS'de yayınlanması

6212 Short time scale period variations of the RRc star V468 Hya Berdnikov, L.N.; Dagne, T.; Kniazev, A.Y.; Dambis, A.K. 3 August 2017

HTML [6212] PDF [6212.pdf] TeX [6212.tex]

6213 SS Cancri: the shortest modulation-period Blazhko RR Lyrae Cafolla, C.; Mathew, R.S.; Edge, A.C.; Swinbank, A.M.; Lansbury, G.B.; Wilson, R.W.; Butterley, T.; Lucey, J.R.; Hardy, L.K.; Littlefair, S.P.; Dhillon, V.S. 10 August 2017

HTML [6213] PDF [6213.pdf] TeX [6213.tex]

6214 Discovery of a New delta Scuti Variable in the Field of RW UMi Alis, S.; Saygac, A. T.; Fisek, S.; Esenoglu, H. H. 05 September 2017

HTML [6214] PDF [6214.pdf] TeX [6214.tex] Table [6214-t2.txt]

6215 Variability of the object M1-15 = SS73 6 during 45 years Kondratyeva, L.; Denissyuk, E.; Rspaev, F.; Krugov, A. 12 September 2017

HTML [6215] PDF [6215.pdf] TeX [6215.tex]

6216 NY Her: possible discovery of negative superhumps Sosnovskij, A.; Pavlenko, E.; Pit, N.; Antoniuk, K. 14 September 2017

HTML [6216] PDF [6216.pdf] TeX [6216.tex]

6217 110 Minima timings of ultra-short orbital period eclipsing binaries Gazeas, K.; Loukaidou, G.; Tzouganatos, L.; Karampotsiou, E.; Petropoulou, M. 20 September 2017

HTML [6217] PDF [6217.pdf] TeX [6217.tex]

6218 120 Minima timings of eclipsing binaries Palafouta, S.; Gazeas, K.; Christopoulou, E.; Bakogianni, V.; Dervou, M.; Loukaidou, G. 20 September 2017

HTML [6218] PDF [6218.pdf] TeX [6218.tex]

6219 Times of Minima of Some Eclipsing Binary Stars with Eccentric Orbit in the Kepler Field Bulut, I. 11 October 2017

HTML [6219] PDF [6219.pdf] TeX [6219.tex] Table [6219-t1.txt]

6209 Times of Minima of Some Eclipsing Binaries

BABAR, E.; YORUKOGLU, O.; ESMER, E.M.; KILICOGLU, T.; OETURK, D.; DOGRUEL, M.B.; OEUTAR, D.; GUNUS, D.; IECI, D.D.; KETEN, B.; TEECAN, C.T.; SENAVCI, E.V.; YILMAE, M.; BASTURK, O.; SELAM, S.O.; EKMEKCI, F.; ALBAYRAK, B.; CALISKAN, S.; AKCAR, A.E. 23 May 2017

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 5282

Konkoly Observator Budapest 31 May 2002 HU ISSN 0374 - 067

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 6102

Konkoly Observatory Budapest 11 April 2014 HU ISSN 0374 - 0676

ERRATUM TO IBVS NO. 4855 AND TIMES OF MINIMA OF THE ECLIPSING BINARY V357 PEGASI

ALIS, SINAN^{1,2}; KESKIN, M. MUSTAFA³; ATAY, M. ERAY¹

¹ University of Istanbul, Faculty of Science, Department of Astronomy and Space Sciences, 34452 Universit Istanbul, Turkey, email: sinanali@yahoo.com

² Eyuboglu Twin Observatories, Namik Kemal Mah, Dr. Rustem Eyuboglu Sok, No:3 81240, Umraniy Istanbul, Turkey

³ Ege University, Science Faculty, Astronomy and Space Sciences Department, 35100, Bornova - Izmir, Turke

Observatory and telescope: 16" Cassegrain telescope at TUBITAK[†] National Observatory.

Detector:

SSP-5A photoelectric photometer, Hamamatsu 4457 pmt.

Method of data reduction:

Reduction of the data were made in the usual way.

Method of minimum determination:	
Times of minima were determined by the method of Kwee and van Woerden	

Observed	star(s):						
Star name	GCVS	Coordina	tes (J2000)	Comp. star	Epher	neris	Source
	type	RA	Dec		E 2400000+	P [day]	
V357 Peg	EW	23 45 35	$+25\ 28\ 52$	HIP 116688	48500.3159	0.578452	1

Source(s) of the ephemeris:

The Hipparcos & Tycho Catalogues (ESA, 1997)

Times of 1	minima:					
Star name	Time of min.	Error	Type	Filter	O - C	Rem.
	HJD 2400000+				[day]	
V357 Peg	51810.4986	0.0004	II	U, B, V, R	-0.0007	This work
	51812.5233	0.0005	I	U, B, V, R	-0.0006	This work
	51817.4412	0.0010	II	U, B, V, R	0.0005	This work
	51819.4662	0.0010	Ι	U, B, V, R	0.0009	This work

[†]TUBITAK : The Scientific and Technical Research Council of Turkey

TIMES OF MINIMA OF ECLIPSING CATACLYSMIC VARIABLES

ATALI, H.B.; ALIS, S.; YELKENCI, K.; SAYGAC, A.T.; AKSOYU NURANOGLU, Y.; FISEK, S.; ULGEN, E.K.

Department of Astronomy and Space Sciences, Faculty of Science, Istanbul University, 34119, Istanbul, Turkey; e-mail: salis@istanbul.edu.tr

Observatory and telescope:

0.6m Ritchey-Chrétien (f/8) telescope (IST60) at Ulupinar Astrophysical Observatory, Canakkale.

Detector:	Apogee Alta U42 CCD camera, 2048×2048 pixels with
	a read-out noise of 10e ⁻ RMS; SBIG STL-1001E CCD
	camera, 1024×1024 pixels with a read-out noise of $14.8e^{-1}$
	RMS.

Method of data reduction:

Reduction of the CCD frames was made in the usual way using IRAF¹ package.

Method of minimum determination:

The minima times were computed with Kwee & Van Woerden (1956) method.

Times of min	ima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
BH Lyn	56195.5590	0.001	Ι	White-light	C2
TT Tri	56195.2590	0.002	I	White-light	C2
	56195.3990	0.003	I	White-light	C2
	56570.3250	0.002	I	White-light	C1
HS0455+8315	56193.3580	0.001	I	White-light	C2
	56193.5070	0.001	I	White-light	C2
	56571.2650	0.005	I	White-light	C1
	56571.4140	0.005	I	White-light	C1
PX And	56158.3920	0.002	Ι	White-light	C1
	56194.5390	0.003	I	White-light	C2
	56570.5200	0.001	I	White-light	C1
V1315 Aql	56159.2930	0.001	I	White-light	C1
-	56159.4330	0.001	I	White-light	C1

¹IRAF is distributed by the National Optical Astronomical Observatories, operated by the Association of the Universities for Research in Astronomy, inc., under cooperative agreement with the National Science Foundation

Keşif?

COMMISSIONS G1 AND G4 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Volume 63 Number 6214 DOI: 10.22444/IBVS.6214

Konkoly Observatory Budapest 05 September 2017

HU ISSN 0374 - 0676

DISCOVERY OF A NEW & SCUTI VARIABLE IN THE FIELD OF RW UMi

ALIS, S.^{1,2}; SAYGAC, A. T.^{1,2}; FISEK, S.¹; ESENOGLU, H. H.^{1,2}

¹ Istanbul University, Department of Astronomy and Space Sciences, 34119 Beyazit, Istanbul, Turkey e-mail: salis@istanbul.edu.tr

² Istanbul University Observatory Research and Application Centre, 34119 Beyazit, Istanbul, Turkey

During observations of the old nova RW UMi a new variable has been identified in the same field. RW UMi, new variable, and comparison stars are marked in the finding chart given in Fig. 1. Variability of this star noticed as it was being used as a comparison star of RW UMi. Light curves that can be seen in Fig. 2, reveal that the new star is a short-period pulsator, likely a δ Scuti star.

Figure 1. Identification chart of the field. New variable, RW UMi and comparison stars are marked.

İST40 ile İlk Bilimsel Gözlem: V410 Aur

Gözlemciler: Sinan Aliş, Süleyman Fişek, E. Kaan Ülgen, Olcaytuğ Özgüllü, Uğurcan Çelik

İST40 Kontrol Odası

2 Bilgisayar: Windows + Linux

Kubbe kontrol (dönüş) İç aydınlatma kontrol

İST40 Kameraları (IR)

Kubbe Otomasyonu KafDome

Kubbede Dikkat Edilecekler

Turuncu bara sistemi Güç kontrol kutusu

Kubbenin gücü!

İST40 İle Hangi Değişen Yıldızları Gözlemeliyiz?

Başlangıç olarak, kısa dönemli değişen yıldızların takibini programa alacağız.

Örten çift yıldızlar (P<=0.5 gün)
 Tutulma gösteren kataklismik değişenler
 delta Scuti türü zonklayanlar

The appearance of an O-C diagram is strongly dependent on the ephemeris formula used to construct it. Traditional analysis ways of an O-C diagram use basic method listed below (Batten, 1973; Tsessevich, 1973).

1) a linear approximation, where the time of the primary minimum is given by a linear relation:

2

$$MinI = t_0 + P_{orb} \times E$$

a quadratic least square fitting, which uses the average period value over the elapsed time interval (P):

 $(O - C) = 1/2(dP_{orb}/dt)\bar{P}E^2$

which is sometimes combined with a sinusoidal periodic variation.

 $MinI = t_0 + PE + 1/2(dP/dt)PE^2 + \alpha \sin(2\pi E/P_* + \phi)$

There were three new ways of O-C diagram treatment proposed in the mid-90s:

- the higher order polynomial method (HOP), or the first continuous method (Kalimeris et al., 1994);
- the state-space statistical model (SSM), proposed by (Koen, 1996);
- the second continuous method (Jetsu et al., 1997).

For methods detail, please refer to the following paper: "The (O-C) Diagrams of Eclipsing Binaries: Traditional and New Ways of Treatment" (Rovithis-Livaniou, 2001).

To get even more information on methods for O-C diagrams and errors accounting, please follow the publication: "The O-C Diagram: Basic Procedures" (Sterken, 2005).

The O-C diagram of FZ Ori (upper part), where the solid line represents the theoretical LITE variation caused by a 3rd body and the O-C residuals obtained after the subtraction of LITE (lower part). For details, please refer to (Zasche, Liakos et al., 2009)

Dönem Değişimi O-C Grafiği

İlk Olarak Yapılması Gerekenler

<u>SINAVLARI AKSATMAMAK / İYİ ÇALIŞMAK</u>

İletişim listesi oluşturmak

Gözlem programı oluşturmak (cisim, gözlenebilirlik)

Gözlenecek Cisim Listesinin Oluşturulması

RZ CAS

zbyszek

2457626.3910

6.3

94

SU CAS

MICHEL BREGER

TABLE I

Selected Delta Scuti Stars

PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC

Vol. 91	Februar	y 1979	No. 539
	DELTA SCUTI AND	RELATED STARS*	
	MICHEL I The University of Texas at Austi Received 1978	REGER n and McDonald Observatory October 18	
	An extensive review is given of the current status of our rent problems are emphasized. Particular attention is given and the implied astrophysical properties (often erroneous), s tallicism on pulsation, the nature of the so-called dwarf ceph and strange effects are also discussed with personal, possibly	knowledge of the stars in the lower instability strip. Cu to the following areas: the confusion concerning namin ingle and multiple periods, the effect of rotation and m eids, and pulsation in Ap stars. Various reports of unusu biased judgment on their reality.	r- ig e- al
	Key words: variable stars—8 Scuti stars—dwarf cepheids—p	ilsation	
Delt A or F period r Scuti an and the obvious range fr with a t Scuti sta Scuti pu	I. Properties of δ Scuti Stars ta Scuti stars are variable stars of spectral type with a pulsation period less than 0.93.1 In the ange of 0.25 to 0.30 day we find both the δ d the more evolved RR Lyrae RRc variables, distinction between these two groups is not from the period alone. Light amplitudes in V om a few thousandths of a magnitude to 0.98 typical amplitude of 0.902. The existence of δ trs in clusters such as the Hyades shows that δ distation is a normal and common phenomenon.	cent analyses have shown that the division into the two by amplitude alone is astronomically unrigorous and a unsound. It is essential to combine the two groups or the short-period variables in some other, more meaning What should the combined group of short-period called? One could return to Smith's original suggestion of them <i>dwarf cepheids</i> . The name reflects the fact th are the more dwarfish cousins of the cepheids. Some of such a scheme are that many of these stars are not but giants, and that the term dwarf cepheid has recent to denote the large-amplitude variables only. Possi might result. Eggen in a recent series of papers has wisely avoid problem by calling all these stars (large-amplitude as	a main group strophysically r to subdivide ful way. variables be n and call al lat these star disadvantage dwarfs at all thy been used ble confusion led the whole well as small
above the lation I	he main sequence to below the standard Popu- main sequence. Most δ Scuti stars belong to	ampirude; htm-mori-period caraones. This name has of not being burdened by historical associations of certa However, the name is strongly contested from people v	ine advantage in properties who study the

lat Population I, but a few variables show low metals and high space velocities typical of Population II. Delta Scuti stars form the second most numerous group of pulsators in the Galaxy, after the pulsating white dwarfs.

Many of the δ Scuti stars with amplitudes larger

¹The naming of groups of variable stars is necessarily a controversial subject. It appears prudent to discuss the problem of naming these short-period variables.

Historically, Smith (1955) called the short-period variables dwarf cepheids. His short list included the star & Sct. Since then, most of the small-amplitude, short-period variables have been called δ Scuti stars after their prototype. This name seems to be almost universally recognized. However, those variables with amplitudes larger than 023 (obviously at the time of discovery, since the amplitudes are often variable) have been called either dwarf cepheids of AI Velorum or RRs stars. At times, a variable with an amplitude less than 0."3 has also been considered a dwarf cepheid for unknown reasons. Re-

real ultra-short-period variables such as white dwarfs and cataclysmics with much shorter periods. An improved name of short-period variable cannot be used because of its historical association with RR Lyrae stars.

The name & Scuti seems apt since the GCVS already calls all of the many small-amplitude variables by that name. The name also has associations of normal-abundance, normal-mass and luminosity, which fits most of the large-amplitude variables as well. The disadvantage is the fact that some variables do have a different abundance and probably are fainter than the normal variables of similar periods.

The name AI Vel might also be considered. The primary period of AI Vel was discovered a few years before that of the star δ Sct and AI Vel might take historical precedence. However, Bessell (1969) established the term AI Vel variables to apply to the largeamplitude variables only. Also, the GCVS does not use the name.

We adopt the scheme requiring fewest changes. The GCVS recognizes both the names & Scuti and RRs stars to refer to the small-and large-amplitude variables, respectively. Since the distinction can no longer be maintained, we drop one of these two names. Variability surveys indicate that small amplitudes are much more common than large amplitudes by orders of magnitudes: we therefore propose to drop the RRs designation and call all the variables 8 Scuti stars.

HR HD	GC1 Ot1	VS her	PERIOD V AMP	REFS	SP M _V	b-y (b-y) _o	β^{m_1}	c ₁ Comments
21 432	ß	Cas	0.104 0.03	M66	F2IV 1.12	0.216 0.224	0.177 2.709	0.785
114 2628	GN 28	And And	0.070 0.035	B69-3 N69	F01V 1.36	0.169 0.167	0.165 2.755	0.869
$\begin{smallmatrix}&139\\3112\end{smallmatrix}$	0	Tuc	0.049 0.06	CL71 SS76	A4 1.42	0.146	0.187 2.827	0.984
	CC	And	0.125 0.25	LE53 F67	F3IV			
214 4490	XX 59	Psc Psc	0.10 0.04/0	GB72 BW73	A5 0.57	0.165 0.149	0.178 2.773	0.929
238 4818	V526	Cas	0.136 0.025	BG73	gF6 2.32	0.166 0.172	0.216 2.770	0.780
239 4849			0.056	W77	FO			
242 4919	ρ	Phe	0.105 0.04	CS63 SS75	F2III 1.62	0.207	0.205 2.731	0.789
6870	BS	Tuc	0.065	E70	A5III 1.99	0.166 0.157	0.132 2.765	0.810 2,5
	SS	Psc	0.288 0.43	MR77	A7-F2 0.3	MR77 0,178		1
401 8511	AV 44	Cet Cet	0.032	JJ71	F0V 2.12	0.214 0.151	0.205	0.829
431 9065	WZ	Sc1	0.090 0.03	D69	F0IV 1.55	0.217 0.199	0.144 2.722	0.764
432 9100	VX 97	Psc Psc	0.136 0.02	B69-3	A4IV 0.40	0.090	0.166 2.817	1.093
9133	XX	Sc1	0.045 0.03	D69	FO			
515 10845	VY	Psc	0.219 0.02	B69-3	A7n 0.84	0.158 0.140	0.173	0.979 3,15
11285			0.063	W78	FO			
	RV	Ari	0.093	D56				1
15165	BDS	1269A	0.10 0.07	SH76 MB76	(0.7)	0.197 0.213	0.100 2.706	0.822
729 15550	UU 26	Ari Ari	0.080 0.026	B69-3	A9V 1.96	0.155	0.185	0.839
	AB	Cas	0.058	T71 TC78				6
812 17093	UV	Ari	0.037 0.02	M67-1 F73	A7IV 2.31	0.135 0.131	0.188 2.804	0.837
20919	н	606	0.035	S78	F0V 2.69	0.207	0.178	0.765

[&]quot;One in a series of review articles currently appearing in these Publications.

The Big List of SW Sextantis Stars (v5.3.0 - Oct 2016)

This is the link to download the Target Characteristics Summary Table

Introduction

The SW Sextantis stars are a sub-class of cataclysmic variables (CVs) that share a number of characteristic observational properties [e.g., transient absorption in their emission line cores that appears at specific orbital phases, single-peaked emission lines rather than the double-peaked lines characteristic of disk-accreting CVs, indications of very high mass transfer rate, etc. – follow this link for a more complete and detailed list of the observational characteristics of the SW Sex stars). Although studied individually for a number of years, the SW Sex stars were first identified as an observationally similar group in the early 1990s.

Establishing a complete census of membership in the SW Sex class is a difficult task, as our understanding of the range and possible origins of the SW Sex syndrome has evolved over the past two decades. For example, original defining characteristics of being a high inclination (i.e., eclipsing) CV and having He II \lambda4686 emission comparable in strength to that of H^B have been relexed as it has become apparent that these were likely selection effects that influenced the discovery of the first SW Sex stars. Meanwhile, some recent work has suggested that the SW Sex stars might be the weekest magnetic CVs with the highest mass transfer rates (follow this link for a discussion of the magnetic scenario for the SW Sex stars), while other theories utilize complex accretion disk structural models (e.g., tilted, warped, precessing disks).

Townsley & Gänsicke (2009) make the following interesting statement about the possible origin of the SW Sex syndrome: "Speculating that high [white dwarf effective temperature] and [mean mass transfer rate] are a common characteristic to all VY Scl/SW Sex stars suggests that these systems represent an exceptional phase in CV evolution. One possible explanation is that these are systems that just evolved into a semi-detached configuration, as the mass transfer goes through a short peak during turn-on [e.g., D'Antona et al. 1989], and that CVs are preferentially born within the 3-4 hr period range, which would be the case if the initial mass distribution is peaked toward equal masses in the progenitor MS binaries [de Kool 1992]."

Consequently, determining the full census of the SW Sex stars is important, as the SW Sex syndrome appears to be widespread among the CV population, and possibly has important implications related to the secular evolution of CVs. A full understanding of the SW Sex syndrome appears to be widespread among the CV population, and possibly has important implications related to the secular evolution of CVs. A full understanding of the SW Sex syndrome will likely depend on a complete census of the number and renge of CVs that are efficited with it. To this end, I have compiled The Big List of SW Sex stars. It is not necessarily intended to be the definitive SW Sex star census, but it is exhaustive in the sense that it contains all CVs that have been linked to the SW Sex stars in published sources.

The Big List of SW Sextantis Stars is complete to the best of my knowledge (as of the version date listed above). During each update of the Big List, I locate new SW Sex stars by running a NASA-ADS search, with a publication window starting 1 month prior to the last. Big List update, for text strings "SW Sex" and "cataciyamic" in paper abstracts, cross-correlated with a full-text ADS search for just "SW Sex" anywhere in the body of the paper. If you know of a new SW Sex star that I've missed, please email its name or other identifying information to me, and I'll add it to the list. Some of the information shown here is unavoidably subjective (mainly the assessment of a CV as a Definite, Probable, or Possible SW Sex star]. If you disagree with any of my assessments, you can also email me and I will consider changing the appropriate entry, based on your persuasiveness!

Orbital Period Distribution of the SW Sex Stars

http://www.dwhoard.com/biglist

Tutulma Gösteren CV'ler

Gözleme Yönelik Hazırlıklar

Gözlenecek Alanın Haritasının Oluşturulması AAVSO Variable Star Plotter

ng

Variable Star Plotter

VSP Help Guide Request a Sequence Report chart errors

Required If no coordinates are provided below	
RIGHT ASCENSION	DECLINATION
Allowed Formats: HH:MM:SS, HH MM SS, DDDJ0000. Required if no name is given above	Allowed Formats: ±DD:MM:SS, ±DD MM SS, ±DD.X000. Required if no name is given above
CHOOSE A PREDEFINED CHART SCALE	
Select one	
A is larger, slower; G is smaller, faster	
CHOOSE & CHART ORIENTATION	
Visual Revensed CCD	
PLOT & FINDER CHART OR & TABLE OF FIELD PHOTOMETRY?*	
Chart O Photometry	
CHART ID	

Öğrenmemiz Gerekenler

CCD Ön İndirgeme Adımları

Görüntülerin Hizalanması

CCD Görüntülerine Astrometri Uygulanması

Minimum / Maksimum Zamanlarının Belirlenmesi

Dönem Analizi

JD ve HJD Hesaplama Sinyal / Gürültü Oranı Atmosferik Sönümleme - Hava Kütlesi Hesabı Fark ve Mutlak Fotometri - Standart Sisteme Dönüşüm